

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Comparison of the Kinetics of the Exchange Mechanism of the Thallium Ion with $^{18}\text{C}_6$ and with Pentaglyme in Acetonitrile Solutions

Yongsheng Hou^a; Alexander I. Popov^a

^a Department of Chemistry, Michigan State University, East Lansing, Michigan

To cite this Article Hou, Yongsheng and Popov, Alexander I.(1989) 'Comparison of the Kinetics of the Exchange Mechanism of the Thallium Ion with $^{18}\text{C}_6$ and with Pentaglyme in Acetonitrile Solutions', *Spectroscopy Letters*, 22: 1, 87 — 100

To link to this Article: DOI: 10.1080/00387018908053862

URL: <http://dx.doi.org/10.1080/00387018908053862>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**COMPARISON OF THE KINETICS OF THE EXCHANGE MECHANISM OF
THE THALLIUM ION WITH $^{18}\text{C}_6$ AND WITH PENTAGLYME IN
ACETONITRILE SOLUTIONS**

Key Word: NMR; Kinetics; Macroyclic complexes; Pentaglyme; Acetonitrile; Thallium(I).

Yongsheng Hou and Alexander I. Popov

Department of Chemistry, Michigan State University
East Lansing, Michigan 48824

ABSTRACT

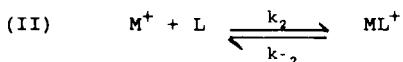
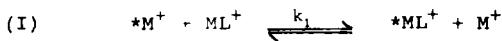
In acetonitrile solutions, the exchange reaction is bimolecular in the $\text{Tl}^+ + ^{18}\text{C}_6$ system, while in the $\text{Tl}^+ +$ pentaglyme system the associative-dissociative and the bimolecular mechanisms coexist at room temperature and the bimolecular exchange reaction dominates at 263° K . For the bimolecular mechanism in the case of $\text{Tl}^+ + ^{18}\text{C}_6$ and the associative-dissociative mechanism in the case of $\text{Tl}^+ +$ pentaglyme, the activation energies of the exchange reactions change with temperature. At 298° K , in the $\text{Tl}^+ + ^{18}\text{C}_6$ system the activation energy for the bimolecular exchange reaction is $\approx 2\text{ kcal.mol}^{-1}$ and exchange rate constant (k_1) is $(4.1 \pm 0.1) \times 10^7\text{ s}^{-1}\text{mol}^{-1}$; in the $\text{Tl}^+ +$ pentaglyme system, the activation energy for the associative-dissociative exchange reaction is $\approx 5\text{ kcal mol}^{-1}$ and the decomplexation rate constant (k_{-2}) is $(2.2 \pm 0.4) \times 10^5\text{ s}^{-1}$. The activation energy for the bimolecular exchange in the $\text{Tl}^+ +$ pentaglyme system was determined to be $3.00 \pm 0.05\text{ kcal.mol}^{-1}$ and the exchange rate constant $(3.0 \pm 0.1) \times 10^8\text{ s}^{-1}\text{ mol}^{-1}$.

INTRODUCTION

The "Macrocyclic Effect", i.e. the increase in the stability of a metal complex when a linear polyether ligand is replaced by its cyclic analogue,¹⁻⁶ is most often discussed in terms of the entropy or the enthalpy of complexation. However, at this time it is still not clear which of the above is the dominating factor for the enhanced stabilities of the macrocyclic polyether complexes over the linear polyether complexes. The effect of kinetics on the macrocyclic effect has been largely ignored. In particular, while many papers discuss kinetics of complexation reactions involving macrocyclic and nonmacrocyclic ligands,⁷ except for the work of Tuemmler *et al.*⁸, there is very little information on the complexation kinetics involving linear analogues of crown ethers. We therefore undertook a comparative NMR study of the exchange mechanisms and kinetics of thallium(I) complexes with 18-crown-6 and its linear analogue, pentaglyme, in acetonitrile solutions.

EXPERIMENTAL PART

NMR spectra of ²⁰⁵Tl were obtained on a Bruker WH-180 FT spectrometer equipped with a temperature control unit for variable temperature operations. The spectrometer is operating at a field of 42.27 kG, and for the ²⁰⁵Tl nucleus, the frequency of 103.88 MHz. Chemical shifts of ²⁰⁵Tl were referenced to that of 0.1M TlClO₄ solutions in D₂O corrected for the differences in bulk magnetic susceptibilities of sample solutions and D₂O of the reference solution.⁹



Linewidths were measured by fitting a Lorentzian function to the resonance lines. A complete NMR lineshape analysis technique was used to determine the kinetic parameters for the exchange between the solvated and complexed cation sites. Equations were of

similar format to those used by Cohen et al.¹⁰ Some modifications were made to include exponential line broadening and delay time effect on the spectra.¹¹ A nonlinear least-squares program KINFIT¹² was used to fit the spectra to NMR exchange equations in order to extract the mean lifetime, τ , for each system at several temperatures.

Acetonitrile (AN) (Spectro purity, J.T. Baker) was of spectra grade and contained less than 0.0001% water; it was not further purified except for being stored over freshly activated molecular sieves before use. Thallium(I) perchlorate (K&K Chemical Company) was recrystallized from deionized water and then dried at 120°C for three days. Pentaglyme was synthesized and purified by a method described by Okoroafor.¹³

RESULTS AND DISCUSSIONS

Assuming the formation of a 1:1 complex, $M^+ + L \rightleftharpoons ML^+$, if the concentrations of the ligand L are smaller than the total concentrations of the salt, metal ions undergo exchange between the uncomplexed and complexed sites, which usually occurs by one of two mechanisms shown below:^{14,15}

where I and II are the bimolecular and the associative-dissociative exchange mechanisms respectively.

Table 1. The exchange rate constants(k_1) of the thallium ion in the system of $TlClO_4$ with pentaglyme in acetonitrile via the bimolecular exchange mechanism and the exchange or the decomplexation rate constant(k_2 or k_3) via the associative-dissociative mechanism, $TlClO_4:0.01M$

Temperature (K)	$k_1 \times 10^{-8}$ $M^{-1} \cdot s^{-1}$	$k_2 \times 10^{-5}$ s^{-1}
308	3.5 ± 0.1	3.1 ± 0.4
298	3.0 ± 0.1	2.2 ± 0.4
293	2.7 ± 0.1	1.9 ± 0.4
288	2.5 ± 0.2	1.6 ± 0.4
283	2.3 ± 0.3	1.3 ± 0.5
278	2.1 ± 0.2	1.0 ± 0.5
273	1.9 ± 0.2	0.8 ± 0.5
263	1.5 ± 0.2	0.4 ± 0.6

It was found that for the $Tl^+ + 18C6$ system the bimolecular exchange reaction predominates throughout the temperature range studied, while for the $Tl^+ +$ pentaglyme system the two exchange reactions coexist at room temperature and the bimolecular one dominates at 263°K. The rate constants at different temperatures for the respective reactions for the $TlClO_4 + 18C6$ and $TlClO_4 +$ pentaglyme systems are listed in Tables 1 and 2 respectively.

It was also observed that the Arrhenius plot ($\ln k_1$ vs. $1/T$) for the $TlClO_4 + 18C6$ system is not linear (See Figure 1). Figures 2 and 3 show the Arrhenius plots of the two exchange mechanisms for the system $TlClO_4 +$ pentaglyme in acetonitrile solution. It can be

Table 2. The exchange rate constants of the thallium ion in the system of $TlClO_4$ with $^{18}C_6$ in acetonitrile, $TlClO_4:0.01M$

Temperature (k)	$k_1 \times 10^7$ $M^{-1}s^{-1}$
278	3.7 ± 0.5
288	4.2 ± 0.4
293	4.1 ± 0.5
298	4.1 ± 0.2
303	4.4 ± 0.3
308	4.7 ± 0.4
313	5.6 ± 0.3
318	$7. \pm 1.$
323	$8. \pm 2.$
328	6.8 ± 0.6

seen that the Arrhenius plot is linear for the bimolecular mechanism and slightly curved for the associative-dissociative mechanism. The activation energies E_a of reactions can be obtained from the Arrhenius plots, and then the other activation kinetic parameters (ΔH^\ddagger , ΔG^\ddagger , and ΔS^\ddagger) can be calculated using Eyring transition state theory. According to the equation:

$$\ln k = A - \frac{E_a}{RT}$$

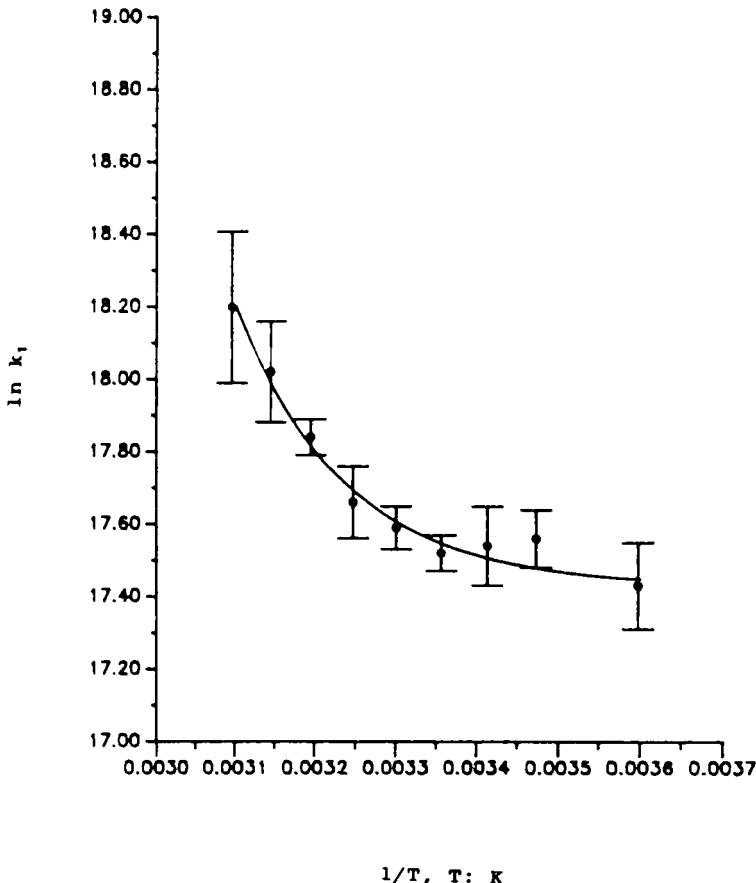


Figure 1 $\ln k_e$ vs. $1/T$ for the system $\text{TlClO}_4 + 18\text{C}_6$ in acetonitrile solution.
 k_e : the exchange rate constant of the thallium ions by the bimolecular mechanism; T : temperature in K

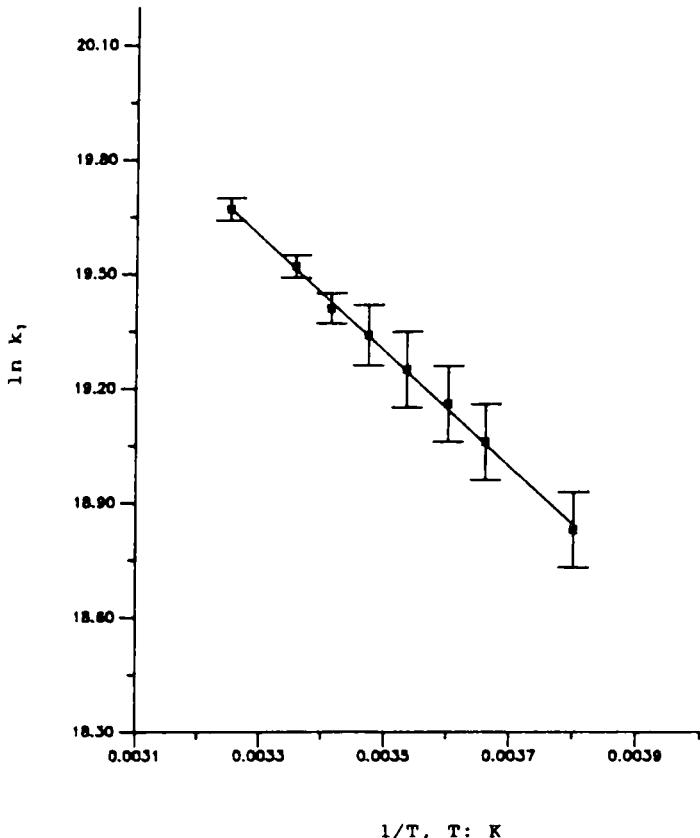


Figure 2 $\ln k$, vs. $1/T$ for the bimolecular exchange mechanism in the system $TlClO_4$ + pentaglyme in acetonitrile solution
 k : the exchange reaction rate constant of the thallium ions by the bimolecular exchange mechanism; T : temperature in K

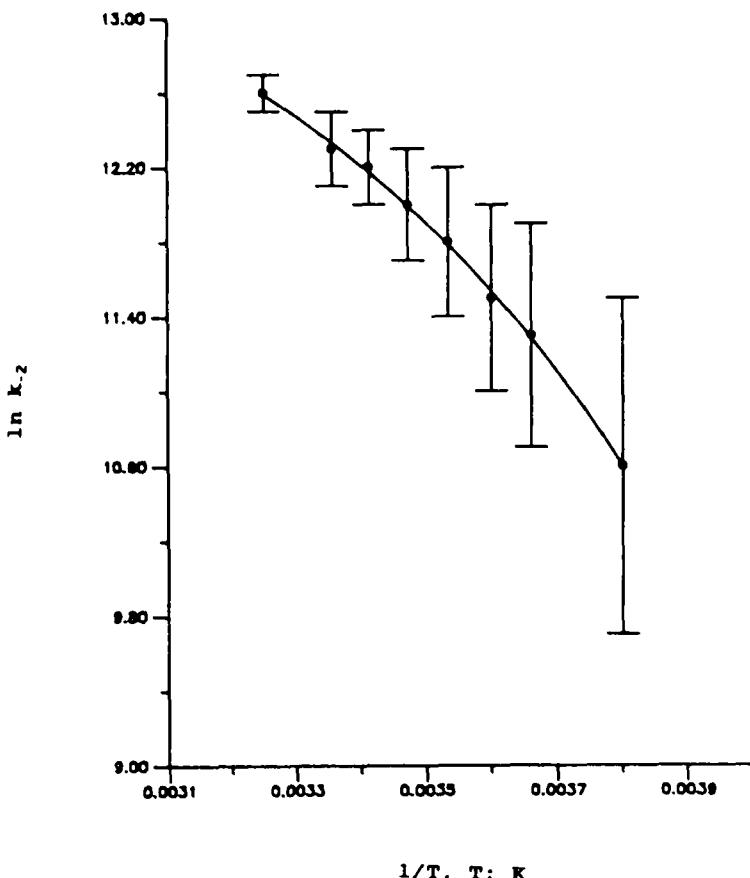


Figure 3 $\ln k_2$ vs. $1/T$ for the associative-dissociative mechanism in the system $TlClO_4 +$ pentaglyme in acetonitrile solution
 k_2 : the exchange or the decomplexation rate constant of $TlClO_4$ -Pentaglyme complex by the associative-dissociative exchange mechanism; T : temperature in K

(k is the rate constant, E_a is the activation energy of the reaction, R and T are the gas constant and the temperature respectively); $\ln k$ should be linearly dependent on $1/T$. The nonlinearity of Arrhenius plots can be caused by the variation of either A or E_a , or both, with temperature. However, at this time the data are insignificant to unambiguously identify the cause.

For the $TlClO_4 + 18C6$ system, the activation energy decreases with decreasing temperature. It is ≈ 16 $kcal \cdot mol^{-1}$ at 328K, ≈ 2 $kcal \cdot mol^{-1}$ at 298K, and ≈ 0.3 $kcal \cdot mol^{-1}$ at 278K respectively. For $TlClO_4 +$ pentaglyme, system plots of $\ln k_1$ (linear) and $\ln k_{-2}$ (nonlinear) vs. $1/T$ give activation energies of 3.00 ± 0.05 $kcal \cdot mol^{-1}$ for the bimolecular exchange mechanism, and temperature dependent activation energy for the associative-dissociative mechanism (≈ 5 $kcal \cdot mol^{-1}$ at 298K and ≈ 11 $kcal \cdot mol^{-1}$ at 263K). The other kinetic parameters of the exchange reactions are listed in Table 3.

The above results clearly show that the slope of the ligand has a strong influence on the complexation, decomplexation, and exchange mechanisms. In general, based on the electrostatic repulsions of the like charges and the entropy terms, the associative-dissociative mechanism is favored over the bimolecular mechanism. This preference can be changed if the charge-charge repulsion can be substantially reduced by the formation of contact-ion pairs, or the existence of strong solvent-cation interactions. The energy barrier for the decomplexation (E_a) is also determined by the easiness of the release of the ligand. If a ligand strongly interacts with a cation, the decomplexation step will be difficult, (especially in solvents of very poor solvating abilities), and the activation energy E_a will be high.

Table 3. Kinetic data for the exchange of the Tl^+ ion with 18C6 and pentaglyme in acetonitrile solutions at 298K.

Ligand	k_a	E_a ^b	ΔH^\ddagger	ΔS^\ddagger	ΔG^\ddagger
18C6	$(4.1 \pm 0.2) \times 10^7$	~ 2	~ 1.4	~ -19	7.06 ± 0.03
Pentaglyme ^c	$(3.0 \pm 0.1) \times 10^8$	3.00 ± 0.05	2.41 ± 0.05	-11.6 ± 0.2	5.88 ± 0.02
Pentaglymed	$(2.2 \pm 0.4) \times 10^5$	~ 5	~ 4.4	~ -19	10.2 ± 0.1

^a k : the decomplexation rate constant k_2 corresponding to the associative-dissociative mechanism in acetonitrile solutions with the units s^{-1} or the exchange reaction rate constant k_1 of the bimolecular exchange mechanism with the units $s^{-1}M^{-1}$;

^b E_a , ΔH^\ddagger and ΔG^\ddagger units - kcal mol⁻¹; ΔS^\ddagger units - cal mol⁻¹ K⁻¹;

^c Bimolecular exchange mechanism

^d Associative-dissociative exchange mechanism

If ligands interact with cations sufficiently strongly so that the cation-cation repulsion can be reduced, it is possible that the bimolecular mechanism can still exist. In acetonitrile solutions, both the $TlClO_4 \cdot 18C6$ complex and the $TlClO_4 \cdot PG$ complex are relatively stable however the former is about 100 times more stable than the latter¹³. Therefore, the bimolecular mechanism becomes possible for both the $Tl^+ + 18C6$ and $Tl^+ +$ pentaglyme systems. For the $Tl^+ + 18C6$ system, the cation-ligand interactions are so strong that the bimolecular mechanism is the only exchange pathway throughout the studied temperature range. The situation for the $TlCl_4 + PG$ system in acetonitrile solutions is a little different, i.e. the two exchange mechanisms coexist at room temperature while the bimolecular exchange mechanism dominates at low temperatures. In this system, the ligand-cation interaction is not as strong as that of $18C6$ with Tl^+ , and this interaction cannot effectively offset the cation-cation repulsion at the transition state of the bimolecular mechanism so that the associative-dissociative mechanism dominates. At low temperatures, the increase of the cation-ligand interaction can assist to decrease the cation-cation repulsion at the transition state and the bimolecular mechanism prevails.

It should be mentioned that configurations of ligands may also play an important role in determining the exchange mechanism. The crown ether $18C6$ is nearly planar so that cations can approach the ring from either side. Pentaglyme is a linear ligand and it is more difficult to visualize symmetrical and simultaneous bonding of two cations to the ligand which occurs in the transition state of the bimolecular mechanism. At lower temperatures, the structure of the ligand is more rigid and more likely to take crown-ether like configurations, leading to the larger contribution of the bimolecular mechanism to the overall exchange process.

Another important factor that should be mentioned for the observed bimolecular mechanism is the charge density of the Tl^+ cation. It is known that K^+ and Tl^+ have very similar sizes ($r_{K^+} = 1.33 \text{ \AA}$, $r_{Tl^+} = 1.40 \text{ \AA}$), and therefore similar charge densities. It is known that the K^+ ion exchanges often proceeds by the bimolecular exchange mechanism.¹⁶

The ratio of the formation (k_2) and decomplexation (k_{-2}) reaction rate constants (mechanism II) yielded stability constant of a complex $K_f = k_2/k_{-2}$. If the exchange reactions proceed by the bimolecular mechanism, only the exchange reaction rate constants (k_1) can be determined by NMR measurement, and the complexation (k_2) and the decomplexation (k_{-2}) reaction rate constants are not obtainable. Therefore, in the $Tl^+ + 18C6$ and $Tl^+ +$ pentaglyme systems, it is not possible to directly compare the complexation and decomplexation rate constants to see which of the two dominates the stability constants. The $Tl.PG^+$ complex ($\log K_f = 3.65 \pm 0.05$)¹³ is less stable than the $Tl.18C6^+$ complex ($\log K_f = 5.8 \pm 0.5$)¹³ and the decomplexation rate is faster for the former. The formation rate constant at 298 K for the $Tl.PG^+$ complex is $9.8 \times 10^8 \text{ s}^{-1}$, as obtained by using the relationship $K_f = k_2/k_{-2}$ where K_f and k_{-2} are known. According to Tuemmler *et al.*,⁸ the formation rate constant of the $Tl.PG^+$ complex is slower than the diffusion-controlled rate constants (10^9 to 10^{10} s^{-1}). The slower formation rate constants of linear ligands than the one expected for the diffusion-controlled processes probably results from the step-wise substitution of the solvent molecules in the solvation shells of cations. The pre-arrangement of the donor atoms of the macrocyclic ligands before complexing cations can more effectively replace the solvent molecules. It would be reasonable to expect that the complexation of the thallium ion by $18C6$ is faster than the

complexation by pentaglyme and may reach the diffusion-controlled limit. The faster complexation rate and the slower decomplexation rate in the $Tl^+ + 18C6$ system compared to the $Tl^+ +$ pentaglyme system combine to give a 100-fold more stable complex in the case of the macrocyclic ligand.

CONCLUSIONS

By comparing the activation energies and their temperature-dependence for the exchange reactions of Tl^+ ions with $18C6$ and pentaglyme, it seems that the strengths of the cation-ligand interactions and the structures of the ligand are important factors in determining the exchange mechanism. From the kinetic points of view, the bimolecular exchange reaction mechanism is not favored by the entropy factor, but the enthalpy factor is so strongly favored that it can overcome the entropy influence and the bimolecular exchange mechanism prevails for the system of $TlClO_4 + 18C6$ in acetonitrile solutions and for the $TlClO_4 +$ pentaglyme system at low temperatures. Because of the bimolecular exchange mechanism in the system $TlClO_4 + 18C6$, the decomplexation rate constant of the complex cannot be obtained. Thus, we are not able to compare the two systems to conclude which factor, complexation or decomplexation, determines the macrocyclic effect in this case.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of this work by the NSF Grant 8610421.

REFERENCES

1. Kodama, M.; Kimura, E. J.C.S. Dalton, 1976, 116.
2. Kodama, M.; Kimura, E. J.C.S. Dalton, 1977, 1473.

3. Kodama, M.; Kimura, E. J.C.S. Dalton, 1977, 2269.
4. Hinz, F.P. and Margerum, D.W. J.Am. Chem. Soc., 1974, 96, 4993.
5. Hinz, F.P. and Margerum, D.W. Inorg. Chem., 1974, 13, 2941.
6. Busch, D.H.; Farmery, K.; Goedken, V.; Katovic, V.; Melnyk, A.C.; Sperati, C.R.; Tokel, N. Adv. Chem. Ser., 1971, 100, 44.
7. Izatt, R.M.; Bradshaw, J.S.; Nielsen, S.A.; Lamb, J.D.; Christensen, J.J. Chem. Rev., 1985, 85, 271.
8. Tuemmler, B.; Maass, G.; Vogt, F.; Sieger, H.; Heimann, U.; Weber, E. J. Am. Chem. Soc., 1977, 99, 4683; Ibid., 1979, 101, 2588.
9. Live, D.H.; Chan, S.I. Anal. Chem., 1970, 42, 791.
10. Cahen, Y.M.; Dye, J.L.; Popov, A.I. J. Phys. Chem., 1975, 79, 1292.
11. Strasser, B.O.; Hallenga, K.; Popov, A.I. J. Am. Chem. Soc., 1985, 107, 789.
12. Nicely, V.A.; Dye, J.L. J. Chem. Educ., 1971, 48, 443.
13. Okoroafor, N.O.; Popov, A.I. Inorg. Chem. Acta., 1988, 148 91..
14. Lehn, J.M.; Sauvage, J.P.; Dietrich, B. J. Am. Chem. Soc., 1970, 92, 2916.
15. Shchori, E.; Jagur-Grodzinski, J.; Luz, Z.; Shporer, M. J. Am. Chem. Soc., 1971, 93, 7133.
16. Schmidt, E.; Popov, A.I. J. Am. Chem. Soc., 1983, 105, 1873.